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Abstract
This paper studies a challenging problem of tracking severely
occluded objects in long video sequences. The proposed
method reasons about the containment relations and human
actions, thus infers and recovers occluded objects identities
while contained or blocked by others. There are two condi-
tions that lead to incomplete trajectories: i) Contained. The
occlusion is caused by a containment relation formed be-
tween two objects, e.g., an unobserved laptop inside a back-
pack forms containment relation between the laptop and the
backpack. ii) Blocked. The occlusion is caused by other ob-
jects blocking the view from certain locations, during which
the containment relation does not change. By explicitly dis-
tinguishing these two causes of occlusions, the proposed al-
gorithm formulates tracking problem as a network flow repre-
sentation encoding containment relations and their changes.
By assuming all the occlusions are not spontaneously hap-
pened but only triggered by human actions, an MAP infer-
ence is applied to jointly interpret the trajectory of an object
by detection in space and human actions in time. To quan-
titatively evaluate our algorithm, we collect a new occluded
object dataset captured by Kinect sensor, including a set of
RGB-D videos and human skeletons with multiple actors,
various objects, and different changes of containment rela-
tions. In the experiments, we show that the proposed method
demonstrates better performance on tracking occluded ob-
jects compared with baseline methods.

Introduction
We study the problem of tracking occluded objects during
human daily activities in cluttered scenes, such as packing,
playing, working, etc. Figure 1 shows an example of a daily
indoor scenario captured by a RGB-D sensor: an agent 1©
enters a room; 2© puts down her backpack; 3© takes a lap-
top out of the backpack and puts it on the table; 4© grabs a
cup, fetches some water from a water dispenser; 5© sits back
and puts down the cup next to her. During the course of this
event, objects disappear and then re-appear frequently.

Tracking objects in such scenarios is a challenging prob-
lem due to severe occlusions caused by two conditions:
- Contained. The occlusion is caused by a new contain-

ment relation formed between two objects, e.g., a person
puts a laptop into a bag, which is view-independent;
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Figure 1: A scenario for tracking occluded objects in an in-
door scene. The dashed lines represent the inferred trajec-
tories and different colors indicate different objects in the
scene. By explicitly reasoning about containment relations,
the proposed algorithm is capable of recovering full trajecto-
ries of objects even they are contained or occluded by other
objects in the video.

- Blocked. The occlusion is caused by other objects ob-
served from certain camera views, in which the contain-
ment relations unchanged, e.g., a laptop is sitting in front
of a cup, which blocks the view of the cup from the cur-
rent camera view and is view-dependent.

We argue such problem is not merely a vision task com-
pared to traditional visual tracking tasks, which primarily fo-
cuses on reliable object detectors and data association meth-
ods. Instead, significant reasoning processes are involved. To
address this problem, we believe an explicit model of rela-
tions among objects as well as relations between objects and
agents are needed.

The proposed framework is shown in Figure 2. Given a
RGB-D video with extracted human skeleton sequence in a
scene, state-of-the-art detection algorithms are applied to de-
tect regions of interest of each object and human actions over



Figure 2: The framework of the proposed method. (a) Sensor input: a sequence of RGB-D images and human skeleton captured
by a Kinect sensor. (b) Off-the-shelf state-of-the-art object detection and human action detection algorithms were applied to
extract the object location and human actions per frame. (c) Inference on a network flow representation. The solid red lines
denote the observations in space. The dashed red lines denote that the present state of the object is hidden and there is no
observation. The blue lines denote the observations in time. S and E are the start and the end of the trajectories, respectively. A
dynamic programming scheme is applied to search, optimize and recover the complete trajectory of each object.

time; the detection results serve as the initial proposals and
the input to our algorithm. We pose the problem of recov-
ering object trajectories as Maximizing a Posteriori (MAP)
problem using a network flow representation, in which a tra-
jectory of an object is jointly interpreted and constrained by
both object detection and containment relations in space as
well as human actions over time. A dynamic programming
scheme is applied to search, optimize and recover the com-
plete trajectory of each object.

This paper makes three contributions:
1. We propose a method to recover incomplete trajectories

of objects by taking account of containment relations and
two causes of occlusions: contained and blocked.

2. We assume that human action is the only cause that leads
to occlusions and object status changes, and use it as a
constraint to interpret trajectories of objects over time.

3. We introduce a new dataset including a set of RGB-D
videos of human interacting with occluded objects.

Related Work
Spatial Reasoning. Spatial reasoning plays an essen-
tial role in human daily life. Although quantitative ap-
proaches can provide the most precise information, numer-
ical information is often unnecessary or unavailable at hu-
man level. In computer vision, quantitative approaches usu-
ally study objects tracking problem, of which the litera-
ture is too expansive to survey here; we refer readers to
recent survey and benchmark (Wu, Lim, and Yang 2015;
Smeulders et al. 2014; Wu, Lim, and Yang 2015). Here, we
focus on spatial reasoning methods related to the presented
work.

As a typical example, container has been used to study
spatial reasoning problem (Bredeweg and Forbus 2003;
Frank 1996). Using physical-based simulations, (Liang et
al. 2015) evaluated human cognition of containing relations
through human studies. (Davis, Marcus, and Chen 2013) de-
veloped a knowledge base for qualitative reasoning about

containers, expressed in a first-order language of time, ge-
ometry, objects, histories, and events. Some exemplary tasks
include i) computational approaches for reasoning about liq-
uid transfer (Kubricht et al. 2016; Yu, Duncan, and Yeung
2015; Mottaghi et al. 2017), ii) reason about containability
and containment relations (Liang et al. 2016; Yu, Duncan,
and Yeung 2015; Wang, Liang, and Yu 2017), and iii) oc-
clusion modeling and reasoning (Eichner and Ferrari 2010;
Enzweiler et al. 2010; Wojek et al. 2011). Compared to prior
work, we integrate qualitative and quantitative approach and
explicitly model the occlusions by containment relations
when an object is contained or blocked by others.

Detection using Context. Context has been widely ex-
plored in human-object interactions (HOI) and multi-object
tracking. Some typical approaches and setups include: i)
Learning deformable action templates (Yao et al. 2014), ac-
tionlet (Wang, Liu, and Wu 2014) and animated pose tem-
plates (Yao et al. 2014). ii) Combining spatial and functional
constraints between human and objects (Gupta, Kembhavi,
and Davis 2009; Yang, Wu, and Hua 2009; Wei et al. 2013).
iii) Task-oriented action recognition (Zhu, Zhao, and Zhu
2015) and utility learning (Zhu et al. 2016; Shukla et al.
2017), including complex cooking tasks (Rohrbach et al.
2012; Aksoy et al. 2011)

Different from the literature in context modeling, we ex-
plicitly model human action as a context cue. Specifically,
we assume that human action is the only cause that leads
to the changes of containment relations, and use the human
action as a constraint to improve the tracking.

Although some recent work adopted deep neural networks
to extract contexts for object detection and tracking, these
data-driven feedforward methods have well-known prob-
lems: i) They are black-box models that cannot be explained
and only applicable with supervised training by fitting the
typical context of the object, thus difficult to generalize
to new tasks. ii) Lacking explicit representation to handle
occlusions, low resolution, and lighting variations—there
are millions of ways to occlude an object in a given im-



Figure 3: Two causes of occlusions. i) Blocked: An apple
(a) can be detected at the beginning, but later (b) becomes
occluded by a bowl. ii) Contained: an apple is contained by
a person (c) and a bowl (d), respectively.

age (Wang et al. 2017), making it impossible to have enough
data for training and testing such black box models. In this
paper, we go beyond passive recognition by reasoning about
time-varying containment relations.

Probabilistic Formulation
A key concept in the present paper is “containment relation”.
An object which contains or holds another object can serve
as a container, forming containment relation with the object
it contains. For instance, when a laptop is inside a backpack,
a containment relation is formed between the laptop and the
backpack, where the backpack plays the role of container.

We make the following assumptions for containers and
containment relations:

- When an object is contained by a container, the object will
inherit the same trajectory from its container. For exam-
ple, consider a case that a laptop is inside a backpack. If a
person carries the backpack around, the laptop will move
together with the backpack, sharing the same trajectory.

- The containment relation is a partially ordered relation
constrained by the volume of the object and its container,
i.e., if a container’s volume is smaller than an object’s, the
object cannot be contained by this container.

- An object can only be contained directly by one container.

Suppose there are K objects in a scene. Our goal is to
recover trajectories of allK objects T = {T 1, T 2, · · · , TK}
from a RGB-D image sequence I = {I1, I2, · · · , Iτ}, where
τ is the length of the image sequence. T k is defined as an
ordered set of object states T k = {xk1 , xk2 , · · · , xkτ}, where
xkt is the state of the kth object in space at time t: xkt =
(lkt , c

k
t ), where lkt is the location of the kth object at time t

and ckt ∈ {1, 2, · · · ,K} is an object index, representing the
inferred container of kth object at time t.

Spatial Hypotheses by Containment Relations
At each frame t, instead of purely relying on detection re-
sults, our algorithm further proposes two types of hypothe-
ses generated based on the possible causes of occlusion.
These two hypotheses provides additional cues, essentially
competing with the detection results. As a result, such extra
info recovered by the containment relations could later help
overcome the miss or wrong detection described in the next
section. The two types of hypotheses are:

Figure 4: Human action features at time t in a sliding win-
dow with the length of 2ε. The red line represents the dis-
tance between the hand and the spine of the person. The
yellow line represents the distance change between the hand
and the object. The green line represents the location change
of the object in the current sliding window.

Contained. In these situations, occlusion happens due to
forming new containment relations as shown in Figure 3 (c)
and 3 (d), where hypotheses are shown in dashed box. For-
mally, suppose such occlusion happens to the kth object at
time t, the algorithm proposes that the location of the kth
object the same as its container while keeping it’s container

the same as in the previous frame: xkt = (l
ckt
t , c

k
t ), c

k
t 6= k.

Blocked. In such cases, an object is occluded due to another
object sitting in between the object and the camera from cer-
tain camera views, as shown in Figure 3 (a) and 3 (b), where
an apple is occluded by a bowl and a person. The dashed box
is the proposal for the apple’s present location, which is the
same as the location in the last frame before occlusion hap-
pened. Formally, suppose such occlusion happens to the kth
object at time t, the algorithm proposes the object state as the
same in previous state: xkt = xkt−1 = (lkt−1, c

k
t−1), where the

location and containment relation remain the same.

Temporal Hypotheses by Human Actions
Across different frames, we consider human as the cause and
the only cause of object state changes, assuming no other
external disturbance in a scene. In other words, if there is
no human action occurring, the objects should remain the
same location and the containment relations will not change.
As a result, human actions impose a hard constraint to rule
out the implausible sudden jumps from the object detection,
resulting in a smooth and plausible trajectory.

In this paper, we represent the human action as a skele-
ton sequence H = {H1, H2, · · · , Hτ}, where τ is the
length of the sequence. At time t, 25 joints of human
skeleton captured by a Kinect sensor were used: Ht =
(h1t , h

2
t , · · · , h25t ).

Recovering Incomplete Trajectories
We recover incomplete trajectories using MAP by reasoning
about containment relations and human actions:

T ∗ = argmax
T

P (T |I) = argmax
T

P (T |X , H) (1)

∝ argmax
T

P (X|T )P (T |H) (2)

= argmax
T

∏
k

P (X|T k)P (T k|H), (3)



where X and H are the object detection in space and human
action in time, respectively. P (X|T k) =

∏τ
t=1 P (Xt|xkt )

models the likelihood for object detector response X =
{X1,X2, · · · ,Xτ} P (T k|H) is a dynamic model which is
a smoothness term for trajectory, and can be decomposed as

P (T k|H) = P ({xk1 , xk2 , · · · , xkτ}|H) (4)

= PS(x
k
0)

τ∏
t=1

P (xkt |xkt−1, Ht−1)PE(x
k
τ ), (5)

where PS(xk0) and PE(xkτ ) are the probability for initializa-
tion and termination, respectively, and P (xkt |xkt−1, Hk

t−1) is
the transition probability of two consecutive frames, which
models the probability that the object status changes from
time t − 1 to t based on the observation of human action
Ht−1. Intuitively, this probability evaluates the consistency
between the location of an object and human actions. As
we discuss in previous section, the location changes of an
object can be interpreted by the occurrence of human ac-
tions. Figure 4 illustrates three examples of the object loca-
tion changes and the corresponding human actions, includ-
ing (a) a person taking an apple from a bowl, (b) a person
throwing a frisbee, and (c) the object keeps the same loca-
tion without human action.

The transition probability of two consecutive states is

− logP (xkt |xkt−1, H
k
t−1) = 〈ω , θ[ε]〉, (6)

where ω is the template parameter. θ[ε] is the extracted hu-
man action feature in a time interval [t− 1− ε, t− 1+ ε].

For θ, we consider three types of features in a sliding
window on the time axis: human pose, relative movements
between the human and the object, and the object move-
ments. Suppose that the sliding window size is 2ε, the fea-
ture vector sequence at time t is Fm = (Fhm,Frm,Fom),
m ∈ [t− 1− ε t− 1 + ε]. Specifically,

- Fhm is the relative distance of all the skeletons to three
base points (two shoulders and one spine point), which
encodes human action. In Figure 4, we show one compo-
nent ofFhm in red lines: the distance between the hand and
the spine point.

- Frm is the distance between human hand and the location
of the object, which is denoted in yellow lines in Figure 4.

- Fom is the distance between the locations of the object at
time m and t, depicted by green lines in Figure 4.

A sequence clip is first interpolated to a certain length.
The wavelet transform is then applied to Fm. The coeffi-
cients at the low frequency are kept as the action feature. The
window sizes and sliding steps are both in multiple scales.

Substituting Eq. 4 into Eq. 1, we then have

T ∗ = argmax
T

K∏
k=1

τ∏
t=1

[P (Xt|xkt )· (7)

PS(x
k
0) · P (xkt |xkt−1, Ht−1) · PE(xkτ )].

We can reformulate Eq. 7 as an Integer Linear Programming
problem:

f∗ = argmin
f

C(f), (8)

(a) (b)

Figure 5: Our occluded object tracking dataset. (a) Statistic
of the dataset. (b) Some examples of the activities.

where

C(f) =
∑
i

csif
s
i +

∑
i,j

cijfij +
∑
i

cifi +
∑
i

cei f
e
i (9)

cij = − logP (xj |xi, Hi) (10)

ci = − logP (xi|T k) (11)
cei = − logPE(xi) (12)
csi = − logPS(xi) (13)
s.t. fij , fi, f

s
i , f

e
i ∈ {0, 1}. (14)

This is equivalent to finding a min-cost path in network flow
with source S and sink E as shown in Figure 2: the red
arrows denotes the detection on input RGB-D images with
cost on the edge ci, the dashed red arrows indicates that the
object is hidden at the present state and there is no observa-
tion from current frame, and each transition between succes-
sive frames is denoted by blue lines with cost cij given by
human actions, serving as a smoothness term.

Dynamic programming is applied to optimize Eq. 9. By
assuming objects will not affect each other’s trajectory, we
optimize the trajectory for each object individually. Firstly,
we run K-Shortest Paths Algorithm (Berclaz et al. 2011),
which generates a set of tracklets. Then we use the Viterbi
algorithm to connect these tracklets, which yields continu-
ous trajectories for each object.

Experiments
Dataset
We collected a 3D dataset with diverse scenes, multiple ac-
tions and various objects to evaluate the proposed method
(Figure 5). 1346 video clips in 10 scene categories were
captured by Kinect sensors. RGB and depth images, 3D hu-
man skeletons as well as point cloud data were recorded in
each video clip. Compared with existing dataset, the pro-
posed dataset focuses on occluded objects for visual track-
ing, which consists of a large variety of human actions caus-
ing object location changes in different scenarios, such as
throwing, catching, picking up, putting down, fetching, lift-
ing, etc.

Each frame in the dataset was manually annotated with
ground truth by drawing bounding boxes for each object.
When an object is occluded, we annotate the ground truth
based on two types of causes for the occlusions. i) Con-
tained. The object shares the location with its container,



Figure 6: Transition probability of the object location in the green bounding box. The solid boxes depict that the object is
tracked by object detectors. The dashed boxes depict that the object is recovered by inference. (a), (c) and and (e) show detected
bounding boxes and human skeletons on point cloud. (b) and (d) are the transition probabilities between two possible locations.
In (b), the bottom four bars with low probability keep the same since we constrain the impossible object moving that are not
caused by human actions.

(a) (b) (c)

Figure 7: Confusion matrix of HOI. 1© denotes that the ob-
ject movement is consistent with HOI, whereas 2© denotes
that the object movement is not consistent with HOI. (a)
Human pose sequence only. (b) Human pose sequence with
objects context. (c) Joint inference in our method.

forming a new containment relation. ii) Blocked. The ob-
ject is stationary, and the containment relation remains the
same. For the situation that a person serves as a container,
we draw a bounding box on the person’s hand.

Transitions in DP: an In-depth Example
Figure 6 shows an example of the trajectory inference pro-
cess of an object bounded by a green box. The tracking
results are visualized in the bottom panel, where the solid
boxes denote the detected location, and the dashed boxes de-
note the inferred results. Specifically, we employed the state-
of-the-art RGB-D based detectors (Song and Xiao 2013) on
a RGB-D image sequence. The detected objects are bounded
by boxes with different colors shown in Figure 6 (a), (c) and
(e). The human skeletons from Kinect are in red color.

Figure 6 (b) and (d) illustrate the partial transition proba-
bilities changes between two consecutive states in an inter-
val (frame 11 to frame 51, frame 53 to frame 108), equiv-
alent to the probability of human actions and calculated by
Eq. 6. The left panel of (b) and (d) are some possible tran-
sitions. Take the first bar in (b) as an example. The green
and red dot represent the location of the object bounded by
green bounding box and the person, respectively. The bar
depicts the probabilities of the transition from the green box
location to the human hand location over time. We can see

that the probability increases from frame 11 to frame 51. At
frame 51, the person picked up the object. From frame 59
to frame 108, the object was held by the person. The first
bar of Figure 6 (d) shows the probability of the object being
carried by this person.

It is worth noting that the bottom four bars in Figure 6
(b) have low transition probabilities which are close to zero.
Take the last bar in Figure 6 (b) as an example. It shows the
probability of the object bounded by the green box moving
to the location of the object bounded by the orange box. This
movement was not caused by human action and violated our
assumption, which was ruled out during the inference.

From frame 51 to 109, the object was contained and thus
cannot be visually detected. Human action provided a strong
cue for the object location: a person picked up this object and
moved it to a container bounded by a yellow bounding box.

Ablative Analysis: Roles of Interactions in HOI
In this section, we evaluate the roles and importance of HOI
quantitatively by turning on and off certain components in
the proposed method.

We consider the HOI as a binary classification problem:
if the object movement is consistent with human action, it
should be classified as positive; otherwise it is negative. We
define whether the object movement is consistent with hu-
man action using two criteria: i) if no human action, the ob-
ject should remain stationary, and vice versa; ii) if there is
an object location change, the object should follow the tra-
jectory of human action.

We first consider the simplest method using human pose
only, i.e., Eq. 6 with feature vector Fm = (Fhm). As showed
in Figure 7a, using human pose only is not sufficient to
achieve reasonable performance. This was mainly caused by
the lack of object context, disallowing a good classification
between certain actions, e.g., putting down and picking up.

Next, we consider the method using both human pose
and object context, i.e., Eq. 6 with feature vector Fm =
(Fhm,Frm,Fom). Although achieving reasonable results as
shown in Figure 7b, this method only looks at local window
m ∈ [t−1−ε, t−1+ε], thus lacking of global optimization.



Figure 8: An example of the experiment results. The goal is to track the yellow ball. In each bar, the yellow represents the
correct results, and the black represents the wrong results. The overlap ratio of bounding boxes were set to 0.5. Different colors
denote different objects: actor 1 (green), actor 2 (blue), actor 3 (red) and ball (yellow). (a) Examples of tracking results. The
dashed boxes depict the object is occluded. (b) Temporal-suppression results. (c) The scores of consistency between object
movement and human action. (d) Spatial-suppression results. (e) Full model results.

With back propagation using DP as described in Eq. 7 and
Eq. 9, the proposed method globally adjust the inference,
resulting in the best performance among three methods as
shown in Figure 7c.

All the results report here were trained by SVM on the
same training data. To address the problem of different
scales of interaction, different step sizes and different sliding
window sizes along time axis were used.

Ablative Analysis: Spatial/Temporal Suppression
In this section, we design two experiments (baseline1 and
baseline2) to evaluate how spatial and temporal information
influence the tracking. We compare the results of these two
experiments with the approach of tracking with occlusion
model (baseline3) and the proposed method (full model).

As an example, we show comparisons of results from dif-
ferent methods using a video of 530 frames (Figure 8). In
this video, three actors threw and caught a ball highlighted
by a yellow bounding box. The ball traveled fairly fast, ap-
pearing and then disappearing frequently. Directions, scales,
and views of the ball also varied. Severe occlusions by hands
or other body parts occurred.
Temporal Suppression (baseline1). In this setting, we do
not consider the human actions, i.e., set Eq. 10 to a constant.
As a result, it is equivalent to an online tracking problem: the
trajectory of an object is determined only by the response of
detectors. Non-maximum suppression was applied on all de-
tection candidates per frame. Figure 8 (b) shows the results.
Spatial Suppression (baseline2). In this setting, we set
Eq. 11 to a constant, i.e., not considering the detection score,
but inferring object location only by human actions in time.
In other words, the trajectory of an object is determined only
by the transition probabilities modeled by human actions.

Results were shown in Figure 8 (d). Failure cases mostly
fall into two categories: i) when human skeleton, the object
and the container are occluded at the same time, and ii) when
human skeleton or the object are partially occluded, it is dif-
ficult to distinguish the throwing action from the catching
action as the lack of action cues or spatial context.
Tracking with occlusion model (baseline3). A related
topic in computer vision is multi-object tracking. Some re-

cent efforts were trying to infer and recover both short-
term and long-term occluded objects by occlusion as-
sumption (Zhang, Li, and Nevatia 2008; Andriyenko and
Schindler 2011). In this paper, we use (Zhang, Li, and Neva-
tia 2008) as the baseline representing the state-of-the-art
multi-object tracking algorithm with occlusion assumptions,
which adopted an Explicit Occlusion Model (EOM) to track
with long-term inter-object occlusions, adding occluded ob-
ject hypothesis to model occlusions.
Full model. The results of full model are shown in Fig-
ure 8 (e). Benefit from both spatial and temporal terms
with back propagation, most of the occlusions were success-
fully recovered. The failure cases happened when the ob-
ject was transferred continuously between containers with-
out any valid object detection in space. For example, from
frame 265-320, the ball was passed from actor 1 to actor 2
and then passed to actor 3. Later, at frame 320, the ball was
passed back to actor 1. In this case, the ball was not detected
during the entire process. As the result, our method believed
the ball was in the hand of actor 1 all the time.

Table 1: Tracking accuracy of full model compared with
three baselines on different subsets of the proposed dataset.

baseline1 baseline2 baseline3 full
all 0.57 0.32 0.59 0.69

blocked 0.21 0.08 0.25 0.47
contained 0.15 0.02 0.16 0.42

Results. To evaluate our method quantitatively, we extract
two subsets of the video clips from the proposed dataset
based on two causes of occlusions: contained by another ob-
ject and the blocked camera views. We evaluate the accuracy
on these two subsets as well as on the entire dataset.

Success rate was adopted for quantitative analysis, de-
fined as the ratio between the number of frames with correct
object localization and the number of all frames. Given an
estimated bounding box of an object be and the ground truth
bounding box bg , the overlap score is defined as r = be∩bg

be∪bg ,
where ∩ and ∪ are the intersection and union of two regions.
An object bounding box is considered correct if r ≥ r0. The



Figure 9: Different overlap ratios evaluated on different sub-
sets. The red, yellow, green, and blue line represent the re-
sults of full model, baseline1, baseline2, and baseline3, re-
spectively. The horizontal axis is the threshold axis, ranging
from 0 to 1. The vertical axis is the success rate.

accuracy of the tracking results are shown in Table 1 with
r0 = 0.5. We further evaluate success rate when varying
different overlap ratios r0. Results are shown in in Figure 9.

Evaluations on Existing Datasets
In addition to our proposed dataset designed for tracking se-
vere objects which are “contained” or “blocked”, we fur-
ther test our method on some existing datasets for model-
ing HOI: CAD-120 (Sung et al. 2012), CMU interaction
dataset (Gupta, Kembhavi, and Davis 2009), MSR action
recognition dataset (Yuan, Liu, and Wu 2009), and NW-
UCLA Multiview Action 3D dataset (Wang et al. 2014).
The major differences between these four datasets and other
public available datasets (e.g., the multiple objects tracking
datasets) is: these four datasets focus on rich HOI, severe oc-
clusions between human and objects, and large appearance
variations of object, which is the main focus of this paper.

To evaluate our method on these datasets, we apply
the RGB-D detectors (Song and Xiao 2013) for RGB-D
datasets (Sung et al. 2012; Wang et al. 2014; Yuan, Liu,
and Wu 2009), and RGB detectors (Kalal, Mikolajczyk, and
Matas 2012) for RGB-only dataset (Gupta, Kembhavi, and
Davis 2009). For action detection, we train a classifier on 2D
data for CAD 120 and CMU interaction datasets which have
no skeleton data. Examples of qualitative results are shown
in Figure 10.

The quantitative tracking accuracy is shown in Table 2.
The performance of our method on MSR action recognition
and Northwestern-UCLA dataset is better than the results on
CAD-120 and CMU dataset. We believe two reasons con-
tributed to the performance differences: i) Some errors were
caused by the unreliable action detections in 2D space com-
pared to 3D space. ii) Small object detections are more chal-
lenging in 2D cases, such as pouring from a cup, lighting a
flash light in the CMU dataset.

Table 2: Tracking accuracy on other datasets.

baseline1 baeline2 baseline3 full
CAD-120 0.30 0.13 0.33 0.47
CMU 0.28 0.12 0.25 0.43
MSR 0.43 0.21 0.44 0.60
NW-UCLA 0.56 0.25 0.56 0.72

Figure 10: More qualitative results. Solid boxes are detected
by tracking algorithm and the dashed boxes are inferred. Top
two rows: (a) CAD-120, (b) CMU Dataset, (c) MSR Dataset,
and (d) NW-UCLA Dataset. The bottom three rows (e) are
the results on our proposed occluded objects dataset.

Conclusions and Discussions
We propose an algorithm to infer occluded objects and re-
cover the incomplete trajectories for objects in a cluttered in-
door scene by reasoning about containment relations and hu-
man actions. We assume that the movements of objects are
only caused by human actions, and explicitly model occlu-
sions from two causes: contained by others, or blocked cam-
era views. A network flow representation is adopted to glob-
ally optimize trajectories based on two occlusion causes.
In the experiment, we test our method on the collected
occluded objects dataset and other four existing datasets,
demonstrating the proposed method can provide better per-
formance in challenging scenarios.

The current work is limited in the following aspects:
i) When the object detection is noisy, the performance of

our method is likely to degenerate, especially when continu-
ous transitions between occluded objects happen. High level
knowledge may help to improve the results, e.g., integrating
an inference algorithm for the intention of the agent.

ii) We currently limit the scenarios where human is the
only cause that leads to the object status changes, thus are
unable to handle situations where objects move only by
invisible force field, e.g., gravity. Such challenging situa-
tions would require a much deeper understanding of the 3D
scenes, particular the “dark matter” that is invisible (Shu et
al. 2015), e.g., functionality (Zheng et al. 2013; Zhu, Zhao,
and Zhu 2015) and causality (Fire and Zhu 2013).

iii) The majority of computer vision community is focus-
ing on rigid body. However, properly modeling fluid (e.g.,



water (Bates et al. 2015; Kubricht et al. 2016)) and granular
material (e.g., sand (Kubricht et al. 2017)) is important for
inferring containment relations.
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